12th Maths Formulas List
12th formulas serve as powerful tools to solve complex problems and gain insights into various mathematical concepts. By mastering these 12th-grade math formulas, students can enhance their problem-solving skills.
Algebraic formulas, such as the quadratic formula, help find solutions to quadratic equations. Arithmetic and geometric progression formulas enable the computation of sums and terms in these sequences. Trigonometric identities, like the Pythagorean identities, establish relationships between trigonometric functions. Calculus formulas, including derivative and integration rules, are indispensable for analyzing rates of change and calculating areas. Probability and statistics formulas facilitate the interpretation of data and aid in making informed decisions.
Class 12th Maths Formulas Download
Here we have given the list of some formulas for 12th class Math.
Areas
Square | A=l2 | l : length of side | |
Rectangle | A=w×h | w : width h : height |
|
Triangle | A=b×h2 | b : base h : height |
|
Rhombus | A=D×d2 | D : large diagonal d : small diagonal |
|
Trapezoid | A=B+b2×h | B : large side b : small side h: height |
|
Regular polygon | A=P2×a | P : perimeter a : apothem |
|
Circle | A=πr2 P=2πr |
r : radius P : perimeter |
|
Cone (lateral surface) |
A=πr×s | r : radius s : slant height |
|
Sphere (surface area) |
A=4πr2 | r: radius |
Volumes
Cube |
V=s3V=s3 |
ss: side |
|
Parallelepiped |
V=l×w×hV=l×w×h |
ll: length |
|
Regular prism |
V=b×hV=b×h |
bb: base |
|
Cylinder |
V=πr2×hV=πr2×h |
rr: radius |
|
Cone (or pyramid) |
V=13b×hV=13b×h |
bb: base |
|
Sphere |
V=43πr3V=43πr3 |
rr: radius |
Functions and Equations for 12th Maths
Directly Proportional |
y=kxy=kx k=yxk=yx |
kk: Constant of Proportionality |
Inversely Proportional |
y=kxy=kx k=yxk=yx |
|
ax2+bx+c=0ax2+bx+c=0 |
Quadratic formula |
x=−b±b2−4ac−−−−−−−√2ax=-b±b2-4ac2a |
Concavity |
Concave up: a>0a>0 |
|
Concave down: a<0a<0 |
||
Discriminant |
Δ=b2−4acΔ=b2-4ac |
|
Vertex of the parabola |
V(−b2a,−Δ4a)V(-b2a,-Δ4a) |
|
y=a(x−h)2+ky=a(x-h)2+k |
Concavity |
Concave up: a>0a>0 |
Concave down: a<0a<0 |
||
Vertex of the parabola |
V(h,k)V(h,k) |
|
Zero-product property |
A×B=0⇔A=0∨B=0A×B=0⇔A=0∨B=0 |
ex : (x+2)×(x−1)=0⇔(x+2)×(x-1)=0⇔ |
Difference of two squares |
(a−b)(a+b)=a2−b2(a-b)(a+b)=a2-b2 |
ex : (x−2)(x+2)=x2−22=x2−4(x-2)(x+2)=x2-22=x2-4 |
Perfect square trinomial |
(a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2 |
ex : (2x+3)2=(2x)2+2⋅2x⋅3+32=(2x+3)2=(2x)2+2⋅2x⋅3+32= |
Binomial theorem |
(x+y)n=∑k=0nnCkxn−kyk |
Probability and Sets for 12th Maths Formulas
Commutative |
A∪B=B∪AA∪B=B∪A |
A∩B=B∩AA∩B=B∩A |
Associative |
A∪(B∪C)=A∪(B∪C)A∪(B∪C)=A∪(B∪C) |
A∩(B∩C)=A∩(B∩C)A∩(B∩C)=A∩(B∩C) |
Neutral element |
A∪∅=AA∪∅=A |
A∩E=AA∩E=A |
Absorbing element |
A∪E=EA∪E=E |
A∩∅=∅A∩∅=∅ |
Distributive |
A∪(B∩C)=(A∪B)∩(A∪C)A∪(B∩C)=(A∪B)∩(A∪C) |
A∩(B∪C)=(A∩B)∪(A∩C)A∩(B∪C)=(A∩B)∪(A∩C) |
De Morgan’s laws |
A∩B¯¯¯¯¯¯¯¯¯=A¯¯¯∪B¯¯¯A∩B¯=A¯∪B¯ |
A∪B¯¯¯¯¯¯¯¯¯=A¯¯¯∩B¯¯¯A∪B¯=A¯∩B¯ |
Laplace laws |
P(A)=Number of ways it can happenTotal number of outcomesP(A)=Number of ways it can happenTotal number of outcomes |
|
Complement of an Event |
P(A¯¯¯)=1−P(A)P(A¯)=1-P(A) |
|
Union of Events |
P(A∪B)=P(A)+P(B)−P(A∩B)P(A∪B)=P(A)+P(B)-P(A∩B) |
|
Conditional Probability |
P(A∣B)=P(A∩B)P(B)P(A∣B)=P(A∩B)P(B) |
|
Independent Events |
P(A∣B)=P(A)P(A∣B)=P(A) |
P(A∩B)=P(A)×P(B)P(A∩B)=P(A)×P(B) |
Permutation |
Pn=n!=n×(n−1)×…×2×1Pn=n!=n×(n-1)×…×2×1 |
ex : P4=4!=4×3×2×1=24P4=4!=4×3×2×1=24 |
Permutations without repetition |
nAp=n!(n−p)!nAp=n!(n-p)! |
ex : 6A2=6!(6−2)!=306A2=6!(6-2)!=30 |
Permutations with repetition |
nA′p=npnAp′=np |
ex : 5A′3=53=1255A3′=53=125 |
Combination |
nCp=nApp!=n!(n−p)!×p!nCp=nApp!=n!(n-p)!×p! |
ex : 5C4=5A44!=55C4=5A44!=5 |
Probability Distribution |
Average value |
μ=x1p1+x2p2+…+xkpkμ=x1p1+x2p2+…+xkpk |
Standard deviation |
σ=∑i=1kpi(xi−μ)2−−−−−−−−−−−−⎷σ=∑i=1kpi(xi-μ)2 |
|
Binomial distribution |
P(X=k)=nCk.pk.(1−p)n−kP(X=k)=nCk.pk.(1-p)n-k |
ex : B(10;0,6)B(10;0,6) |
You can download the 12th Maths Formulas List PDF using the link given below.